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In this first article of a series dealing with the geometry of quantum mechanics, 
we introduce the Riemann-Cartan-Weyl (RCW) geometries of quantum 
mechanics for spin-0 systems as well as for systems of nonzero spin. The central 
structure is given by a family of Laplacian (or D'Alembertian) operators on forms 
of arbitrary degree associated to the RCW geometries. We show that they are 
conformally equivalent with the Laplacian operators introduced by Witten in 
topological quantum field theories. We show that the Laplacian RCW operators 
yield a supersymmetric system, in the sense of Witten, and study the relation 
between the RCW geometries and the symplectic structure of loop space. The 
RCW family of Laplacians are the infinitesimal generators of diffusion processes 
on nondegenerate space-times of systems of arbitrary spin. 

INTRODUCTION 

There are several problems in physics which cannot be considered as 
settled definitely. One of them is the determination of the geometrical struc- 
tures to account for gravitation and nonlinear gauge theories. It has become 
known recently that the solutions of the monopole equations have a remark- 
able dependence on the sign of the scalar curvature of the metric of the four- 
dimensional manifold (Witten, 1994). This might appear as rather strange, 
given that the nonlinear non-Abelian gauge theories were conceived to 
account for "internal" degrees of freedom. 

The theory of gravitation admits extensions to Caftan geometries with 
torsion, so that the metric structure appears as partially describing gravitation 
(Cartan and Einstein, 1979); moreover, the Cartan geometries appeared in 
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the context of the Poincar6 group theory of the theory of gravitation (Sciama, 
1962; Hehl et al., 1976, 1995; Changgui and Dehnen, 1991). 

Another problem is the formulation of quantum mechanics in terms 
of trajectories of Brownian processes and the establishment of correlations 
described by the quantum potential (Bohm, 1952; Bohm and Vigier, 1953; 
Holland, 1993). 

It is remarkable that both problems are connected through the Caftan 
geometries, specifically those which have a torsion tensor which reduces to 
its trace Q further described as a trivial Weyl 1-form: Q = d In ~, with ~ a 
positive scalar field defined on space-time. We call these geometries RCW 
(for Riemann-Cartan-Weyl) geometries. We showed in Rapoport (1991) that 
the Weyl trace-torsion 1-form accounts for the average displacement of the 
most general diffusion process on space-time, while the metric describes the 
covariance of these processes. Both together, i.e., the first and second moments 
of the probability density of the processes, determine all higher moments. 
Yet, what is peculiar in this description is that there exists a single geometrical 
Laplacian operator which incorporates these two moments, and thus deter- 
mines all the statistical profiles of the diffusions. This operator, which is the 
infinitesimal generator of the diffusions, and is the most general invariant 
second-order elliptic operator on a smooth manifold (when one assumes 
conservation of probability), is the Laplacian operator associated to the RCW 
geometry (Rapoport, 1991, 1995b, c). This operator does not only determine 
the probability density of the diffusions, yet its path integral representation 
through the Onsager-Machlup Lagrangian, and ultimately the classical 
smooth approximations which with maximal probability realize the diffusions 
(Rapoport, 1995a,b). One finds that these realizations are deviations of the 
geodesic flow due to the Weyl torsion, yet this does not conflict with the 
principle of equivalence, since the diffusions represent an interacting ensem- 
ble (Rapoport, 1995b). 

In this article, we introduce the RCW geometries and their associated 
Laplacian operators, not just on spin-0 systems, still defined on differential 
forms of arbitrary degree. It was observed by Witten that geometrical Lapla- 
cians on forms of arbitrary degree are basic examples of supersymmetric 
systems, in which forms of odd (even) degree are fermions (bosons). We 
shall see that the RCW Laplacians on forms are conformally conjugate to 
Witten's deformed Laplacian in topological quantum field theories (TQFT) 
(Witten, 1982). This is quite striking, since in TQFT the field ~ is rather a 
functional on the infinite-dimensional loop space, not just the solution of the 
conformal invariant equation on space-time, as turns out to be the case in 
the present theory (Rapoport, 1995a, b, c). Yet, we shall see that the role of 
the RCW geometry is essential to the definition of the general symplectic 
structure on loop space, which, as is well known in the Riemannian case, is 
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the key to obtaining exact representations of the trace of the Riemannian 
heat kernels, and ultimately leads to a direct proof of the Atiyah-Singer 
index theorem (Atiyah, 1985). 

We close this introduction with the description of the origin of the 
method which gives Cartan's geometry the universality to describe classical 
spinning test-particle systems (Rapoport and Sternberg, 1984a, b) as well 
as interacting quantum ensembles undergoing diffusions generated by the 
RCW Laplacian. 

In Cartan's approach to classical mechanics, as explained in Rapoport 
and Sternberg (1984a, b), we start with a little group H embedded as a closed 
subgroup in a bigger group G such that the homogeneous space G/H has 
the same dimension as the configuration manifold M. Here, H and G are, 
respectively, the Lorentz and Poincar6 groups, and M is space-time, or we 
can take the de Sitter group O(1, 4) instead of the Poincar6 group and then 
M is a de Sitter space-time. It is the soldering form which infinitesimally 
identifies both spaces. Of course, Cartan was thinking of dynamical systems 
with classical (i.e., smooth) trajectories. The whole point of our theory as 
seen from Cartan's concept is its applicability to quantum fluctuations with 
continuous but nondifferentiable Brownian paths. Instead of copying classical 
dynamical systems on homogeneous space to space-time, the quantum coun- 
terpart of Cartan's method is the copying through an RCW connection on 
space-time of a standard Wiener process. Yet, to deal with Brownian paths, 
Cartan's calculus on manifolds is obviously not applicable and instead one 
has to apply the It6 stochastic calculus, or the Stratonovich calculus, which 
obeys the same rules for derivatives as the classical calculus in R n, thus 
establishing a stochastic calculus which gives the stochastic extension of 
Cartan's method. The relation between classical and quantum motions is 
established, as described above, by the Onsager-Machlup Lagrangian repre- 
sentation of the transition density of the RCW diffusion. The classical system 
appears thus as the most probable approximation of quantum diffusion. This 
establishes the universality of Cartan's method in describing also the relation 
between quantum and classical motions. 

This article is organized in the following way. We first introduce the 
Cartan soldering form and the Riemann-Cartan (RC) geometries, and particu- 
larly the R C W  geometries, which we introduce from the point of view 
of conformal transformations. We then introduce the Laplacian operators 
associated to the RC geometries, and see that to obtain a one-to-one correspon- 
dence (in general dimension other than 2) between geometries and Laplacians 
we need to restrict the theory to RCW geometries. We then generalize the 
Laplacian to differential forms, through the introduction of Dirichlet quadratic 
forms to differential forms of arbitrary degree, to further introduce Witten's 
deformed Laplacian. Later we see that the RCW Laplacians yield a supersym- 
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metric system which is conformally conjugate to Witten's Laplacian system. 
We finally discuss the symplectic structure of loop space and its relation with 
the RCW geometries. Finally, as preparation for a forthcoming article on the 
stochastic extension of Cartan's classical method, we give a local description 
of Cartan's classical method. 

1. CARTAN CONNECTIONS AND 
R I E M A N N - C A R T A N - W E Y L  STRUCTURES 

We shall follow here the presentation due to Rapoport (1991) and Rapo- 
port and Sternberg (1994a,b). 

We recall some basic facts and definitions in order to establish notation. 
Let G be a Lie group and M a differentiable manifold. A principal G-bundle 
over M is a manifold P on which G acts freely on the right, and such that 
the quotient of this G action is M. Thus we have a smooth map "rr: P --4 M 
and "rr-~(x) is a G orbit for each x ~ M. We also assume that P is locally 
trivial in that about each x there is a neighborhood U such that "rr-~(U) is 
isomorphic to U • G (with the obvious definition of isomorphism). We let 
Ra: P ---) P denote right multiplication by a - l ,  

R a ( p ) = p a  - l ,  p ~ P, a ~ G 

so that Ra gives a left action of G on P, 

Rab = R,~Rb 

Let F be some differentiable manifold on which G acts on the left. We can 
then form the quotient of  the product space P x F by the G action; call it 
F(P). Let "rrF: F(P) ----) M denote the bundle projection, and p: P • F ---) F(P) 
denote the passage to the quotient. Then F(P) is also fibered over M by 

"rrF(p(p, f ) )  = "tr(p) 

F(P) is called the associated bundle (to the G action on F and the principal 
bundle P). 

Let J~ P --4 F be a smooth function satisfying 

f ( p a )  = a -  ~f(p) ( 1.1 ) 

Then 

a ( p , f ( p ) )  = (pa -1, af(p)) =- ( p a - ~ , f ( p a - l ) )  

Hence p(p,f(p))  is independent of the choice o f p  ~ "rr-l(x). In other words, 
defines a section s of F(P), i.e., a map 
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s: M ---> F(P) "rro s = id 

s(x) = p(p , f (p ) )  'rr(p) = x 

Conversely, given a section s, we may define the func t i o n fb y  the preceding 
equations and f satisfies f (pa)  = a- i f (p) .  Thus: 

I.emma 1.1. We have an identification of the space of  sections of  F(P) 
with the space of ma ps~  P ~ F satisfying f (pa)  = a-I f (p) .  

There are two especially important cases of this construction. 
In the first case, suppose that F = GIH, where H is a closed subgroup 

of G. So F(P) is a bundle of homogeneous spaces. Let f: P ---) F satisfy the 
identity (1.1) and thus be equivalent to a section s of  F(P). Consider 

f - l ( H )  = {p ~ Plf(p) = H ~ G/H} 

I f p  e f - I ( H ) ,  thenf (pa)  = a - i l l  = H if and only i f a  ~ H. Thus 

f - l ( H )  = Pt4 

is an H subbundle of P, a reduction of the principal G bundle to an H bundle. 
Conversely, suppose that Pn is an H subbundle of  P. Then d e f i n e r  P --* GIH 
by f (Pu)  = H and if 

p = qa, q E Prl 

then 

f ( p )  = a - I l l  

This is well defined, as can easily be checked, and defines a function f 
satisfying the condition (1.1). Thus: 

A section of  the bundle (GIH)(P) 

is the same as a reduction of P to an H bundle Pu (1.2) 

A second important case is where F is a vector space and the action of 
G is linear. Then F(P) is a vector bundle. In this case we can consider k- 
forms 1) on P with values in F. We can consider forms which are horizontal 
in the sense that 

ii~)1) = 0 for any vertical tangent vector ~ (1.3) 

where vertical means tangent to the fiber, and i(~) denotes the operator of 
inner product with the vector field 6- We can also consider forms which are 
equivariant in the sense that (here R* stands for the adjoint of the tangent 
extension of R,) 

R*1) ==- 1) o dR~ = al)  for all a ~ G (1.4) 
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It is easy to check that (1.1) generalizes to: 

Lemma 1.2. An f-valued k-form on P satisfying (1.3) and (1.4) is equiva- 
lent to an F(P)-valued k-form on M. 

[The case k = 0 of Lemma 1.2 is then (1.1)]. 
We can combine the preceding two cases. Suppose that we are given a 

section s of (G/H)(P), so we get a reduced bundle, Pn- We can consider the 
vector bundle associated to the adjoint action of  H on g/h, the homogeneous 
space given by the Lie algebras g and h of G and H, respectively. This vector 
bundle can be identified with the bundle of  vertical tangent vectors to 
(G/H)(P) along the section s. Indeed, we can consider (G/H)(P) as the bundle 
associated to Pn relative to the H action on G/H. On the principal bundle 
Pn the section s corresponds to the identically constant function f - - -  H. At 
the point H we have an identification of T(G/H) with g/h. This identification 
is consistent with the H action. Thus we may identify (g/h)(Pn) with the 
bundle of vertical tangent vectors to (G/H)(P) along s. Now suppose that O: 
TP --r glh is a 1-form which satisfies (1.3) and (1.4) relative to the group 
H. Then O can be thought of as a l-form on M with values in (g/h)(Pn). 
Thus, let s be a section of  (G/H)(P) and PH the corresponding reduced bundle. 
Let O be a l-form on Pn with values in g/h which satisfies (1.3) and (1.4) 
relative to the group H. Then: 

O can be regarded as a l-form on M 
with values in the bundle of vertical tangent 
vectors to (G/H)(P) along s (1.5) 

In the particular case that dim G/H = dim M, we can further demand 
that the 1-form O on M give an isomorphism between TM and the bundle 
of vertical tangent vectors. This is the method conceived by Cartan. The 
form O is called a soldering form (or "soudage" in French). 

For example, suppose that H = O(V) is the orthogonal group of  a vector 
space with a nondegenerate scalar product and G = H �9 V (semi-direct 
sum). Then G/H = V. A soldering form O then gives an identification of 
TM with V(PH). In particular, this puts a (pseudo or) Riemannian metric on 
M and also allows us to identify Pn with the bundle of  orthogonal frames. 
Similarly, if we take H = GI(V), then a soldering form O allows us to  identify 
Pn with the bundle of all linear frames on M. 

Conversely, let PH denote the bundle of frames of a differentiable mani- 
fold M, where H = GI(R'), n = dim M. Then PH carries a canonical 1-form 
O valued in R", and O satisfies (1.2) and (1.3). Namely, O is the so-called 
"structure form" defined by 
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0(6) = p(d'trp~), ~ e TPtt 

p: T~(p)M --~ R", p e PH (1.6) 

Of  course, we can enlarge the bundle Ptt to a G-bundle Po = G(Ptt) and 
then we are back at the situation described above. 

Let P be a vector bundle with structure group G. For each ~ �9 g, the 
Lie algebra of  G, let ~ denote the corresponding vector field on Po given by 
the right action of G on P. Recall that a connection on Po can be described 
as a g-valued l - form too on Po which satisfies 

i(~)to = 6, ~ �9 g (1.7) 

and 

R'to = Adatoo (1.8) 

The horizontal space of  a connection too at a point p e Po consists of  
all tangent vectors at p which are annihilated by too, i.e., those which satisfy 

i(v)too = 0 (1.9) 

Any curve on M lifts to a unique horizontal curve on Pc  (one whose tangents 
are everywhere horizontal) once a lift at one point has been specified. This 
is the notion of  parallel transport along a curve. We shall give a more detailed 
description of the horizontal space in the last section of this article. 

Now suppose we have the following situation: we have a reduction of 
PG to an H bundle Pn and we are given a connection too on Pc- Then the 
restriction of  too to Ptt defines a g-valued 1-form on Ptt which satisfies (1.7) 
with ~ e h and (1.8) with a e H. As h is an invariant subspace of  g, we 
can define the form 

O = (restriction of  too to Pn)/h 

as a g/h-valued l - form on Pn satisfying the conditions of  vanishing on all 
vertical vector fields and of  being equivariant with respect to the action of H. 

I f  the group H is r educ t ive - -o r  more generally, if h has an H invariant 
complement  n in g - - w e  can decompose 

g = h ~ n  

too l P .  = ton + 0 

where we have identified n with g/h. Here ton is an h-valued l - form and O 
is an n-valued 1-form. The form ton satisfies all the conditions for a connection 
on Ptt. Thus: 
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Lemma 1.3. If the group H is reductive, then the restriction of  tog to Pt-t 
determines an n-valued l-form O on Pt,, and a connection ton on Pn. The 1- 
form 0 is horizontal and equivariant relative to H. 

It is important to note that the horizontal subspaces for the connections 
tog and ton will differ, in general, at points of  Prt. However, given ton and 
O, one can reconstruct too along Pn and hence on all of Po. Thus the data 
ton, O on Pn are equivalent to a connection too. 

In particular, if dim G/H = dim M, we can consider the condition that 
O be a soldering form. If this case holds, then tog is known as a Cartan 
connection. If G is the affine group, then a Cartan connection is called an 
affine connection. 

Let F be a vector space on which G acts. We will let Ai(F) denote the 
space of k-forms on M with values in F(P). In particular, we can identify 
A~ with the space of  sections of F(P), a space which we also denote by 
F(P). A connection to on P defines a covariant derivative 

V~': Ak(F) --~ Ak+I(F) 

V~,Y~ = dO - too 

One also defines the curvature 2-form of  the connection to by 

curv(to) = V,~to = alto - l/2[to, to] (1.10) 

For the case of a reduced bundle Pn with a reductive group H, the restriction 
of the curv(toa) to PH is given by 

dtou + dO - l/2[toH + O, ton + O] 

= dton - 1/2[O, O] + dO - Oton - l/2[ton, ton] 

= curv(ton) + V,oO - 1/2[O, O] 

In particular, for the case of  an affine connection, [n, n] = 0, so that the last 
term vanishes. The term 

Vo, O = dO - tot-tO 

is known as the torsion 2-form of the connection ton. In the Levi-Civita 
theory of connections, the torsion entered for describing the nonclosure of  
an infinitesimal parallelogram formed by parallel transport of infinitesimal 
vectors; the noncommutativity of the transport enters into the Christoffel 
symbols. The torsion tensor, in local coordinates, is given by the skew- 
symmetric components of the Christoffel symbols. But in the Cartan theory 
the torsion enters as a (translational) component of  the curvature. In condensed 
matter ph~,sics, it plays the role of  a dislocation density (Kleinert, 1989). 
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We shall assume from now on, unless otherwise stated, that all geometri- 
cal structures are infinitely differentiable, and that space-time M has dimension 
equal to 4. This second condition is unessential. 

We shall be mainly interested in the sequel in G being the Poincar6 
group and H the Lorentz group, so that G/H as a homogeneous space can 
be identified with R 1'3, or H = O(R 4) and G = H �9 R 4 (in what follows, we 
shall not distinguish the degenerate and nondegenerate cases). Then O is an 
R4(pn)-valued soldering 1-form on M, and tOn is an h(Pn)-valued connection 
1-form on M. Then, for any x ~ M, O(x) can be thought of  as a 1-form on 
M with values in TxM, due to the canonical isomorphism between R4(pn) 
and TM. Then, given a local coordinate system ( ~ )  on M, where ot = 1, 
. . . .  4, we get a local coordinate system (x ~, 3/0x ~) on TM. Locally, O takes 
the form 

O(x) = (Oa(x) d ~ )  (1.11) 

with inverse e~3/Ox% a -- 0, l . . . . .  3 representing the indices of  an anholo- 
nomic basis in R4; thus 

O~e~ = ~g and O~,e~ = ~ (1.12) 

If (gab) denotes a metric on R 4, say Euclidean or Minkowskian, the local 
expression for the metric that (9 puts on M is 

a b g ~  = gabOaO~ (1.13) 

which then has the same signature as that of ( g a b ) "  

If  we have a Lorentz (or orthogonal) linear connection on M, tOn = 
(tO~b), then con is skew-symmetric in a, b. Now, since locally any element in 
h takes the form u ^ v, where u and v belong to V (-- R 4 or Rl'3), then con 
defines a connection l-form on M with values in A2V --~ A2TM, COH = 
( t o ~ )  = ab ~ (to. eaeb), with associated TM-valued torsion 2-form 

T = 1/2T~.~dx ~ ^ dx "Y (1.14) 

with coefficients given by the torsion tensor defined by 

ot a a b T ~  = (O-nVo, O)~v e~(OtvO~l - -  tObi.,/Oi3])) (1.15) 

where (tO~,~) denotes the Christoffel coefficients of the connection form tOn 
induced by the isomorphism V | V -- V* | V* induced by g, so that 
tOg, = tOk~gb~. Thus, the Christoffel coefficients of  the connection l-form 
(ha are given by 

I ' ~ p .  ot/21hb a .Jr. ot a (1.16) = ea~_,f~tOb~ eatg~Of~ 

(bn is known in Poincar6 gauge theory as the space-time linear connection. 
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If we assume that toll is compatible with the metric on V, i.e., 
Vo, nr = 0, then ~t4 is compatible with the space-time metric, i.e., 

V~H~g,~I~ = 0 (1.17) 

Thus, lengths of vector fields are preserved under parallel transport. This 
means that O has reduced the bundle of linear frames to the orthogonal bundle. 

What is essential in the connection on M defined by (l .  16) is its nonsym- 
metric character, i.e., it has a nonzero torsion tensor 

T~, = l/2(Fg, - F ~ )  (1.18) 

This geometry is called the Riemann-Cartan (RC) structure. 
Let us introduce a conformal structure on the tangent space of M. 

For this we shall follow Einstein's last work (Einstein and Kaufman, 1955; 
Obukhov, 1982), which resolves Einstein's original criticism to Weyl's Abe- 
lian (and historically first) gauge theory of 1918. 

We define the Weyl transformation on the soldering form 

W(O~) = ~O~ (1.19) 

so that W(e~) = (I/~)e~', and a Weyl transformation on F (which by abuse 
of notation we denote by W, and similarly for the other derived 
transformations) 

W(Fg~) = Fg~ (1.20) 

Then we can derive the following transformation on the metric on M: 

W(g,~p) = t~2g,~l~ and W(g~a) = ~-2g~p (1.21) 

These are the well-known conformal transformations of the metric on M. In 
the above definitions, ~ is a function defined on M with values on R § 

The Riemann-Cartan structure under the above transformations becomes 

W(F~,) = F ~  + ~O~ In qs (1.22) 

with torsion tensor 

T ~  + 1/2(8~0~ In d~ - ~013 In ~) (1.23) 

This shows that only the trace of the torsion tensor is conformally transformed, 
i.e., the 1-form Q = Q~dx~ = T~dx*' of the original connection is transformed 
as W(Q) = Q + 3/2d In ~. 

There are various interesting instances of the transformation (1.22). First, 
if the original space-time connection coefficients are torsionless and given 
by the Levi-Civita coefficients determined by a space-time metric g, we have 
introduced torsion associated to the conformal field ~ on a purely Riemannian 
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geometry. More general is the case in which the original torsion reduces to 
the trace component given by a nonexact one-form Q, which we may interpret 
as an electromagnetic potential with nontrivial field. Then, the above confor- 
mal transformations induce a gauge transformation so that Q is transformed 
to Q + 3/2d In t~. The final case we want to consider is the one in which 
the original space-time connection has nonzero torsion, yet such that its 
trace vanishes completely. In this case, the original space-time connection is 
associated to the rotational degrees of freedom of the Dirac-Hestenes spinor 
field �9 which produces a completely skew-symmetric torsion, while ~ is the 
scalar field that enters in the canonical decomposition of ~ ,  

= ~ exp(~/sS)R 

where R(x) E Spin+(1, 3) ~ SI(2, C) with the property that R(x)R(x)-l = Id. 
For the details of this we refer to Rapoport et al. (1994). The identification of 
t~ as a Schr/Sdinger field was obtained independently from the field equations 
for the geometries introduced by the transformation (1.22) (Rapoport, 1994b). 

Now, the connection defined by (1.22) is not metric compatible, yet the 
modified connection given by (we normalize the 3/2 factor) 

F~r = {~,} + 2/3(~0~ In ~ - g~r In ~) (1.24) 

where {~r are the coefficients of the Levi-Civita connection associated to 
g, is a metric-compatible connection. Then, Q = d In ~, the logarithmic 
differential of the scale field ~, is a Weyl one-form of a RC metric-compatible 
structure. For any metric, taking account of the fact proved in Rapoport 
(1991) that t~ 2 is an invariant probability density, then 2KBQ, where KB is 
Boltzmann's constant, can be thought of as an entropy one-form. We note 
here that consequently ~ need not be a smooth function and then Q is non- 
smooth, following the already classical theory of distributional differential 
forms due to de Rham (de Rham, 1984). 

The metric compatibility of these RC structures produced by the general 
action of the conformal group distinguishes them from the usual Weyl geome- 
try produced by the transformations on the space-time metric (1.21). In the 
latter, it is the Weyl one-form which precisely expresses the lack of preserva- 
tion of lengths under parallel Weyl transport. So the introduction of these 
structures solves a long-standing problem of compatibility of the RC structures 
with the local action of the Weyl group. 

Therefore, this geometry, which we shall call Riemann-Cartan-Weyl 
(RCW), does not have the historicity problem which moved Einstein to reject 
Weyl's attempt to construct the first gauge theory in which he associated the 
Weyl form to the electromagnetic field, this in spite of Q not being a complex 
field (yet, a nonobvious association). 
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It is of great importance that our above constructions can be carded out 
for the case of a general configuration space M of dimension m, on taking 
instead of the Poincar6 group the group given by the semi-direct sum O(m) 
+ R m. This is of relevance for the formulation of quantum mechanics for a 
system of n particles for which M is their configuration manifold (so that m 
= 4n in the relativistic case) and r denotes their joint wave function, and is 
valid also for the Dirac-Hestenes spinor fields (Rapoport et al., 1994). 

2. THE D'ALEMBERT AND WAVE OPERATORS OF THE 
RCW STRUCTURES 

In this section we construct the Laplacian operators associated to RCW 
geometries. As explained in the Introduction, the relevance of this follows 
from the fact that these operators play a central role in the formulation of 
quantum mechanics as a theory of Brownian motion, as well as a Hilbert 
space operator theory. 

We shall study, then, the D'Alembert--in the case g is Lorentzian--or 
Laplacian--in the Riemannian case--operator associated to the RC structures 
(of course, for diffusion processes, we only consider the Riemannian case). The 
construction we shall present is valid for both cases, and from now on we shall 
simply speak of Laplacian operators. Our treatment differs from the original 
treatment given in Rapoport (1991) and follows Rapoport (1995b, c). A com- 
pletely different derivation of this operator can be found in Kleinert (1991). 

Henceforth, in this section the dimension of M will be an arbitrary n. 
We start with an RC connection described by an arbitrary metric g and an 
arbitrary torsion tensor. Let V denote its covariant derivative operator, which 
we additionally assume to be compatible with g, i.e., Vg = 0. Denote the 
Christoffel coefficients of V as F~v; then, 

F ~  = ~ /  + l /2K~ (2.1) 

where the first term in (2.1) stands for the Christoffel Levi-Civita coefficients 
of the metric g, and 

is the cotorsion tensor, with 

S ~  = g g~K T~ 

Let us consider the Laplacian operator on functions associated to this 
Cartan connection, defined--extending the usual definition--by 

H(V)f '= 1/2 tr(V2)f = ll2g~V~V~f (2.2) 
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for any continuously differentiable function f on M, where V stands for the 
covariant derivative operator with respect to F. A straightforward computation 
shows that H(V) only depends in the trace of the torsion tensor and g: 

H(V) = l/2Ag + g~Q~O~ (2.3) 

with Q = T~13dxa, the trace-torsion one-form, and 

A s = tr((Vg) 2) = (det g)-l/2g~f30~((det g)V2g~f~Of~) 
the Laplace-Beltrami operator associated to the Levi-Civita connection Vg. 
Therefore, for the Riemann-Cartan connection V we have that, on smooth 
functions defined on M, 

H(V) -- tr((V) 2) = ~ Ag + 1) (2.3') 

with () the vector-field dual to the 1-form Q: ~)(f) = (Q, gradf) ,f :  M ~ R. 
Notice that/-/(V) only depends on g and the trace-torsion of the connec- 

tion V; the other terms of the invariant decomposition of the torsion tensor 
of V do not appear in the Laplacian. Thus, to obtain a one-to-one correspon- 
dence (in general dimension other than 2, when this is satisfied trivially) 
between Caftan connections and their Laplacian operators, we restrict our- 
selves to V with Christoffel symbols of the form 

{ c t }  2{~,~Q._gf~vQ,~ } (2.4) 
l"~v = [3~ + ( n -  1-~ 

We have 

1 
H(V) = ~ tr((Vg) 2) + Q (2.5) 

In the case that g is Riemannian, then the expression (2.3) is the most 
general invariant Laplacian acting on functions defined on a smooth manifold 
associated to a Markovian semigroup that preserves probability (Rapoport, 
1995c). This restriction will allow us to establish a one-to-one correspondence 
between Riemann-Cartan-Weyl connections (2.4) with Markovian diffu- 
sion processes. 

We shall further assume in the following that Q reduces to the exact 
form Q = d In ~, where t~ is a real function on M. In this case, the RCW 
geometry is determined by the Riemannian metric g and the function 4. The 
corresponding Laplacian, which we shall write from now on as H(g, ~), is 
defined by its action on the function f." M --~ R>0 by 

1 Af t  + (grad In qJ, grad f )  (2.6) H(g, 0)f  = 
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The theory we shall construct is determined by this Laplacian, which 
we shall call the RCW Laplacian. The more general case of non-exact Q is 
related to irreversibility of the quantum motions. It will be discussed in detail 
in a forthcoming article; see also (Rapoport, 1995d). 

3. R C W  LAPLACIANS AND W I T T E N ' S  D E F O R M E D  
LAPLACIAN OF T O P O L O G I C A L  QUANTUM FIELD 
THEORIES  

Let us assume in the following that we have a smooth n-dimensional 
orientable compact manifold M provided with a Riemannian metric g. We 
consider the Hilbert space of square-summable differential forms of degree 
q on M with respect to vol s. We shall denote this space as L 2'q or as L2~q(M, 
volg). The inner product in L 2'q is 

(to' +> = IM (to(x), +(x)> volg 

where the integrand is given by the natural pairing between the components 
of to and the conjugate tensor 

gall31 . . .  gtaq[3q(~l...[$ q 

Alternatively, we can write in a coordinate-independent way (to(x), +(x)) vol s 
= to(x)^ * +(x), with * the Hodge star operator, for any to, + e L 2,q. 

The de Rham-Kadaira operator on L 2"q is defined as 

A = - ( d  + ~)z = - ( d ~  + ~d) 

where ~ is the formal adjoint defined on L 2"q+l of the exterior differential 
operator d defined on L2'q: 

to> = (+, ato) 
for ~ ~ L 2'q+~ and to e L 2"q. In the case of q = 0, this is the Laplace-Beltrami 
operator on functions encountered before; in the general case we have in 
addition to tr(Vg) 2 the contribution of the Weitzenb6ck curvature term. Let 
us be given a C 2 positive function ~ on M. We then have an induced smooth 
density p = 4 2 vOlg on M. 

We introduce the Hilbert space L 2"q'p : L2['~q(M, p) of differential forms 
on M of degree q, square integrable with respect to p, with inner product 

(+t, qb2), = fta (+l(x), +2(x))p (3.1) 

for qbl, +2 ~ L 2"q'"- We define the quadratic form q(+) = �89 +)p, with + 
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on the Hilbert space given by the completion of the space of  all smooth q- 
forms under the L 2'0 inner product. In the case of  exact one-forms, this is 
the quadratic form introduced in correspondence with the Brownian processes 
determined by H(g, d~) (Rapoport, 1991, 1995a, b, c). 

Consider the formal adjoint of d, which we shall denote as 8*, defined 
on  L 2'q+l'p as follows: 

(8*to, ~b)p = (to, d~b), (3.2) 

for any to �9 L 2"q'p and + �9 L 2'q*. Since d 2 = O, we have 

(8 ')  2 = 0 (3.3) 

For any smooth function f defined on M, and to a q-form 

~ ( f t o )  = f ~ t o  - -  /gradfto 

where ix is the interior product derivation on q-forms. 
We introduce the operator on L2'q'P: 

A *'q = - ( d  + 8 ' )  2 (3.4) 

which we can write as 

- (dS*  + 8*d) 

Recalling the definition of  the Lie-derivative operator Lx = dix + ixd, X a 
smooth vector field on M, we finally have 

A r = A q + 2Lgr~d t, r (3.5) 

Here Aq denotes the de Rham-Kodaira  leplacian on q-forms. 
Let us define now the deformed exterior differential operator mapping 

q-forms into q + l-forms, by 

d* = ~d~ - t  (3.6) 

so that 

We have that 

d ' to  = dto - d In 0 ^ to 

(d*) 2 = 0 (3.7) 

This operator is the ('r = - 1  version) of  Witten's deformed differential 
(Witten, 1982). We introduce now the deformed co-differential operator as 
the formal adjoint of  d*: 
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(d*)* = ~ - I ~  (3.8) 

We introduce the Witten deformed Laplacian operator, defined as 

L*'q = - ( d *  + d**) 2 (3.9) 

which can still be written as 

- ( d ' d * *  + d**d) 

We have the following relation between the two Laplacian operators: 

A *'q = ~j-lL*'q~J (3. I0) 

so that these two operators are conformally equivalent under conjugation by 
+. Note that A *'~ = 2H(g, t~). 

The key to the construction of  quantum mechanics as a theory of  diffusion 
processes and a Hilbert space operator theory rests on choosing the operators 
-~A*.q as infinitesimal generators of Markovian semigroups, 2 P'~, q = 0 . . . . .  
n. Here P~ is the stochastic process with infinitesimal generator given by 
H(g,  t~), which was constructed in Rapoport (1991, 1995a, b). The construc- 
tion of this family of diffusion processes on differential forms of  arbitrary 
degree rests on the knowledge of  the data g and ~ which determine the 
RCW structure; these data are determined from a stochastic extension of  the 
Einstein-Hilbert  variational principle to RC geometries; one proves that 
is a solution of  the conformal invariant wave equation (Rapoport, 1995a). 

Thus, starting from the RCW geometry determined by the field equations, 
we can construct a family of stochastic processes on forms of  any degree. 
Remarkably, the Laplacian introduced by Witten in topological quantum field 
theory appears to be related to a wave function which satisfies the field 
equations and produces the torsion of the RCW geometry. 

We would like to note finally that from the fact that (d*) 2 = 0 we can 
define a deformed de Rham complex H~(M, R) as 

Ker(d*: A q ----> Aq+l)/Ran(d*: A q-I ----> A q) 

Since Ker(d*) = ~ Ker(d) and Ran(d*) = t~ Ran(d), we obtain that 
H~(M, R) ~-- Hq(M, R) for any q = 0 . . . . .  n. Now, by Hodge's theorem, 
dim Hq(m, R) = dim(Ker(Aq)), which by the above construction is clearly 
equal to dim(Ker(L*'q)); by (3.10) we conclude that 

dim(Hq(M, R)) = dim(Ker A*'q) (3.11) 

This identification, which we shall not use in this article, is fundamental to 

2A Markovian semigroup in a Hilbert space H is a family of bounded positive linear operators 
{PT, -r > 0} with dense domain contained in H such that P0 = Id satisfying the following 
properties: (i) (semigroup property) P, o P,, = PT+~,, "r, "r' > 0, (ii) (contraction property) 
[IP~[[ < 1, a" > 0, an (iii) "r ---> P, is strongly continuous. 
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the formulation of the ergodic studies of the flows; indeed, if the first Betti 
number of M is b l ( M )  = dim(HI(M, R)) :# 0, then it can be proved that the 
flows corresponding to RCW geometries with infinitesimal generators given 
by �89 ~)  are (moment) unstable (Rapoport, 1995b,c). 

5. RCW GEOMETRIES AND SUPERSYMMETRIC SYSTEMS 

That Laplacian operators on smooth compact manifolds are examples 
of supersymmetric systems was a profound observation due to Witten (1982). 

One starts with a Hamiltonean H on a Hilbert space H, together with a 
self-adjoint operator Q and a bounded self-adjoint operator P both defined 
on H, such that 

H = Q2 > O, pz  = 1, {Q, P} = QP + P Q  = 0 

Then the triple {H, P, Q} is said to be a supersymmetric system, or to have 
supersymmetry. Since P is self-adjoint and ,o2 = 1, then P has 1 and - 1 for 
eigenvalues. Denote 

Hferm = {qb ~ H, P~b = -dp} 

and 

Hbos = {~b ~ H,  P ~  = 0p} 

which are called the fermionic and bosonic states, respectively. Then, Q" 
Hfe~n ---> Hbos and Q: Hbo~ ---> Hfe~m, or in other words, Q maps fermionic 
states into bosonic states and conversely. 

In the present theory, we take for Hilbert space H = (~=o L2"q'p, and the 
Hamiltonean operator H is A ~' = �89 + Lgrad In ~ as an operator on forms of 
arbitrary degree, where A = - (d~ + ~d) 2. Now we take Q = i(d + ~*) and 
P is defined on H by its restriction to q-forms: P I L  2"q'~ = ( -  1)q, q = 0 . . . . .  
n, i.e., the operator of multiplication by ( - l )  q. Then it is easily seen that 
{H, P, Q} is a supersymmetric system. Thus, in this setting, fermionic (bos- 
onic) states are given by odd (even) forms. 

We remark that the quantization of gravitation suggested in the above 
sections by taking IAq'~, with q = 0 . . . . .  n, for infinitesimal generators of 
diffusion processes--corresponding to fermions and bosons--determined by 
solving the heat kernel of each Markovian family Pq, 0 < q < n, depends 
on the knowledge of g and 0. Thus, the knowledge of the RCW geometry 
determines the quantum theory for bosons and fermions alike. 

6. RCW GEOMETRIES AND THE SYMPLECTIC STRUCTURE 
OF LOOP SPACE 

It may seem rather strange that in the present theory, in contrast with 
TQFT, d/is defined on space-time M instead of being a functional on loop 
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space, i.e., the infinite-dimensional manifold ~ = {qb: S 1 --) M, ~b E COO}. 
In this description, M can be recovered as the constant loops of lq. This 
infinite-dimensional setting is the one considered in topological quantum 
field theories, and different choices of  ~ yield supersymmetric cr models, 
supersymmetric d~ 4 theory, etc. (Witten, 1982). Yet, it is to be remarked that 
the RCW geometries are connected to the symplectic structure on lq, in a 
way we describe in the following. 

Let us fix ~b e 12. Then, the tangent space to lq at ~b, T,12, can be 
identified with the space of sections of the pullback vector bundle d~*(TM) 
of TM to S n by qb. The metric g on M defines a me t r i c . ,  on ~b*(TM), and 
hence we have an inner product on T,f~:  (sn, s2) = (1/2"rr) f s  ~ sl.,s2. Thus, 
T+ lq has a pre-Hilbert structure. 

Next, we introduce a general Riemann-Cartan connection V on M. This 
induces a connection on d~*(TM), and hence a covariant derivative operator 
V,  which acts on sections of d~*(TM) by evaluation on the vector field 
d/dcr of S i. Now we can define a skew-symmetric bilinear form on T+ 1~ : 

lls to(dp) = - ~  , (V ,s l . , s2  - V~z . ,S0  (6.1) 

Varying dp ~ l-l, we obtain a differential 2-form on l'l. As first noted by 
Atiyah (1985), dto equals (l/2"rr) times the integral over S n of  the skew- 
symmetric component of  the torsion tensor; for details, see Bowick and 
Rajeev (1987). 

Therefore, for an RCW geometry, to is a closed 2-form on l-l. Yet, to 
is not properly a symplectic form, since it vanishes at those ~b for which V,  
has a 0 eigenvalue, i.e., on any tangent vector which is covariantly constant 
along ~b. In the case of a purely Riemannian geometry, i.e., ~ = 1, this 
"symplectic" setting has been applied to obtain an exact computation of the 
trace of the heat kernel of 21rAg and to directly obtaining the Atiyah-Singer 
index theorem (Atiyah, 1985). It would be interesting to check if this construc- 
tion can be carried out for the trace of  the heat kernel of  H(g,  ~). 

We close this section with the observation that the 2-form of  (6.1) is 
related to the zero modes of string theory (Bowick and Rajeev, 1987); the 
relevance of RC geometries to string theory was assessed in Scherk and 
Schwarz (1974). 

7. T H E  CARTAN CLASSICAL COPYING M E T H O D  

In closing this first in a series of articles, we wish to describe the 
Cartan classical copying method as a preparation for its stochastic extension 
(Rapoport, 1995d). 
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For this, we need to study in further detail the structure of  horizontal 
vector fields on the bundle of orthogonal frames Pn, which we shall do next. 

The total space of Pn is described as the space of  all pairs r = (x, e), 
where x e M and e = [el . . . . .  en] is an orthonormal frame at x, i.e., the 
vectors el . . . . .  en are a basis for TxM satisfying the condition 

g~fjeaeb = "q~b (7.1) 

where "q = ('qab) is the Minkowski metric in the case g is Lorentzian (or the 
Euclidean metric in the Riemannian case); as we already saw, 

e~eb ~ = g ~  (7.2) 

Every vector field L on M induces a vector f i e ld / ,  on PH, defined as 
follows. I f f  is a smooth function on Pu,  then/~f  is given by 

d 
(Lf)(r) = ~ f ( ( e x p  tL)x, (exp tL),e)It  = 0 

where r = (x, e) and (exp tL),:  TxM ~ T(exp rL~,M is the tangent mapping 
to exp tL, so that 

(exp tL),(e) = [(exp tL),el  . . . . .  (exp tL),e,] 

Here, we recall, exp tL is the local diffeomorphism x ~ x(t, x) of  M defined 
by the flow of the differential equation 

d.~ 
- a"(x, t), where L = a~'(x)O~, 

dt 

x(O, x) = x 

If in PH we have a Cartan connection V with coefficients (F ~ )  which is 
compatible with g, we can describe the horizontal subbundle of  Pz  at each 
r E PH as 

Hr = {X is a vector field on 

Pn: X = A~(x)O~ - F~v(x)eV~Af~(x)O/Oe~} 

Hr is clearly a subspace of  Tr(Pu), which is clearly independent of  the choice 
of local coordinates (x ~, e~') on Pn. We recall that the horizontal lift ~ of a 
vector ~ E TxM is uniquely determined by 7r,(~) -- ~ and ~r(e) = x. 

Given a vector field X on M, the horizontal lift ,~ is the unique vector 
field of such that Xr is the horizontal lift of  X('rr(r)) for all r ~ Pu. In a local 
coordinate system (x ~, e~), if X = X~(x)O~, then 
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0 (7.3) = X~O" - F~aX~e~a Oe~ 

Let O: [0, ~)  --~ M be a smooth curve on M; then the horizontal lift 6 
of O is the unique curve on PH such that dO/dt(t) is horizontal and for any 
t --> 0, we have that ~r(6(t)) = O(t). Clearly, if r = (x, e) is given, where x 
= 0(0) ,  then a horizontal lift 6 of  0 starting at r exists and is unique. Indeed 
O(t) = (O(t), [el(t) . . . . .  e.(t)]), where ea(t) e To(,)M is obtained from ea 
by parallel transport along 0 through ~7, for each a = 1 . . . . .  n; there exists 
a unique vector field s on PM such that (L,)r is the horizontal lift of  e, �9 
TxM for every r = (x, e) and a = 1 . . . . .  n. In local coordinates as above, 

L a = e~0,, - F~ve~e ~ Oe~ (7.4) 

The set {s . . . . .  /~,} is called the system of horizontal vector fields, or basic 
vector fields. 

We are finally ready to introduce the Cartan classical copying method. 
Let M be a manifold provided with a Cartan connection ~7 compatible with 
a metric g on M. The Cartan connection enables us to roll M along a curve 
~(t) on R" (where n is the dimension of M) to obtain a curve O(t) on M as 
the trace of  the curve ~/. An important comment is in order: ~/is arbitrary, 
i.e., it can be the trajectory of  an arbitrary dynamical system. The method 
we shall present works because the tangent space at every point is identical 
to the quotient of the affine group of  H (H direct sum with translations) with 
H, so that we can place a Cartan connection ~7 on Pu- To make this precise, 
let r = (x, e) �9 Pn and let ~: [0, ~)  ~ R" be a smooth curve. Define O: 
[0, ~)  ---) PH, where 6 ( 0  = (O(t), e(t)) by 

(copying equation) dO d~/~ dt (t) = e~(t) - - ~  (t) (7.5) 

(parallel transport) Vao/a~ea(t ) = 0 (7.6) 

for every a = 1 . . . . .  n, with the initial conditions 

O(0) = x, e(0) = e (7.7) 

Equations (7.5) and (7.6) have the componentwise forms 

dO ~ d~ a 
--dt (t) = e~(t) ~ (t) (7.6') 

de~ dOf ~ 
dt (t) = - [ '~ (O( t ) )eg( t )  ~ (t) (7.7') 
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which are the componentwise expressions of the single equation 

dO (t) = [,a(0(t)) d'y 
d-7 -~- (t) 

and the initial condition for 0 is 

6(0) = r 

(7.8) 

(7.9) 

where/~a is the system of horizontal vector fields on Pt4. The solution curve 
O(t) = "rr(O(t)) depends on the initial frame at x; we shall denote it by O(t) 
= O(t, r, "V), with r = (x, e). It follows easily that O(t, At,  ~t) = O(t, r, A~l) 
for any t ~ [0, oo) and A E H, where the curveA~/is defined by (A~l)(t) = A~l(t). 

Thus we have completed the formulation of the Cartan copying method 
for classical curves, i.e., for smooth curves. We shall call this instance of the 
Cartan method the classical Cartan copying method. 

The striking point is that one can generalize this method to the copying 
of Brownian motions in R". It is more striking still that to construct quantum 
mechanics as a theory of diffusions, one does not start with an arbitrary 
continuous stochastic process on R", but the simplest elementary case of a 
homogeneous isotropic process, the Wiener process, whose transition proba- 
bility is the standard Gaussian density on R". The diffusion process on M 
becomes completely determined by the RCW connection given by only the 
trace part of the torsion of 7. To carry over this construction to the stochastic 
case, we are lacking one point: the substitution of the usual rules of calculus 
(more specifically, a chain rule) for smooth functions taken along smooth 
curves for rules that are applicable in the case that the curves are sample 
paths of Wiener processes which are continuous nondifferentiable (further- 
more, they are fractals). This shall be presented in a forthcoming article, 
together with the formulation of quantum mechanics as Dirichlet forms associ- 
ated to the RCW Laplacians. 

8. CONCLUSIONS 

We have constructed the RCW geometries and their associated Laplacian 
operators in view to the construction of quantum mechanics as diffusion 
processes or still, as Markovian semigroups having these Laplacians as infini- 
tesimal generators. In this article we have not presented the field equations 
for the RCW geometries, which are essentially related to the solution of a 
Dirichlet problem for the conformal invariant wave equation in the canonical 
Hilbert space determined by the volume form. Thus, the quantization of 
gravitation envisaged in this program appears to be related to the usual 
quantization scheme through the heat kemeI expansion through Riemannian 
invariants (Fulling, 1989; Birell and Davies, 1982). 
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What matters centrally in this quantization, and has been unnoticed by 
other authors, is that from the field equations for the RCW geometry, the 
quantum potential is found to be no other than 1/12 the metric scalar curvature, 
which has assimilated the dependence of the quantum system on the square 
root of the invariant density ~2. In fact, one proves that the explicit dependence 
of the quantum system on the RCW geometry shows up while working in 
the Hilbert space L2(O 2 volg), where volg is the canonical volume density 
associated to the metric g, and ~2 volg is the invariant density of the quantum 
diffusion. By conformal transformation to the canonical Hilbert space L2(volg), 
the heat kernel representation of the diffusion in the R C W  Hilbert space goes 
to the heat kernel representation for the conformal invariant wave operator 
on the canonical Hilbert space (Rapoport, 1995c). Thus, in the L2(~2volg) 
Hilbert space the role of torsion is essential, while in the Hilbert space L2(vOlg) 
the role of torsion is lost due to the identity of the quantum potential with 
(1/12)R(g), where R(g) is the metric scalar curvature. This settles the question 
as to the Riemannian or Cartanian character of the geometry of quantum 
mechanics and gravitation. It seems that Anandan (1988) was the first author 
to point out that the London description of quantum mechanics is related to 
the Weyl geometry, yet that this does not rule out a possible need of incorporat- 
ing torsion into quantum mechanics. 

As a closing remark, we point out that the present theory leads to the 
formulation of the ergodicity studies of the diffusion processes generated by 
the RCW geometries. The striking fact that allows for such a formulation is 
that the flows of the diffusion processes generated by the RCW geometries 
are diffeomorphisms of space-time, in spite of the fact that they arise from 
a nondifferentiable dynamics. As a result of this, the evolution of densities 
governed by a quantum Perron-Frobenius semigroup leads to the fact that 
the tensor product of the Wiener measure with the Born invariant measure of 
the diffusions, ~2VOlg, yields an equilibrium measure for the RCW diffusions 
(Rapoport, 1995b, c). 
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